
FreeRTOS9 on AmbiqSuite SDK
Ultra-Low Power Apollo SoC Family
A-SOCAP3-UGGA05EN v1.1

USER’S GUIDE

FreeRTOS9 on AmbiqSuite SDK User’s Guide

A-SOCAP3-UGGA05EN v1.1 2

Legal Information and Disclaimers

AMBIQ MICRO INTENDS FOR THE CONTENT CONTAINED IN THE DOCUMENT TO BE ACCURATE AND RELIABLE. THIS
CONTENT MAY, HOWEVER, CONTAIN TECHNICAL INACCURACIES, TYPOGRAPHICAL ERRORS OR OTHER MISTAKES.
AMBIQ MICRO MAY MAKE CORRECTIONS OR OTHER CHANGES TO THIS CONTENT AT ANY TIME. AMBIQ MICRO
AND ITS SUPPLIERS RESERVE THE RIGHT TO MAKE CORRECTIONS, MODIFICATIONS, ENHANCEMENTS,
IMPROVEMENTS AND OTHER CHANGES TO ITS PRODUCTS, PROGRAMS AND SERVICES AT ANY TIME OR TO
DISCONTINUE ANY PRODUCTS, PROGRAMS, OR SERVICES WITHOUT NOTICE.

THE CONTENT IN THIS DOCUMENT IS PROVIDED "AS IS". AMBIQ MICRO AND ITS RESPECTIVE SUPPLIERS MAKE NO
REPRESENTATIONS ABOUT THE SUITABILITY OF THIS CONTENT FOR ANY PURPOSE AND DISCLAIM ALL
WARRANTIES AND CONDITIONS WITH REGARD TO THIS CONTENT, INCLUDING BUT NOT LIMITED TO, ALL IMPLIED
WARRANTIES AND CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-
INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHT.

AMBIQ MICRO DOES NOT WARRANT OR REPRESENT THAT ANY LICENSE, EITHER EXPRESS OR IMPLIED, IS GRANTED
UNDER ANY PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT OF
AMBIQ MICRO COVERING OR RELATING TO THIS CONTENT OR ANY COMBINATION, MACHINE, OR PROCESS TO
WHICH THIS CONTENT RELATE OR WITH WHICH THIS CONTENT MAY BE USED.

USE OF THE INFORMATION IN THIS DOCUMENT MAY REQUIRE A LICENSE FROM A THIRD PARTY UNDER THE
PATENTS OR OTHER INTELLECTUAL PROPERTY OF THAT THIRD PARTY, OR A LICENSE FROM AMBIQ MICRO UNDER
THE PATENTS OR OTHER INTELLECTUAL PROPERTY OF AMBIQ MICRO.

INFORMATION IN THIS DOCUMENT IS PROVIDED SOLELY TO ENABLE SYSTEM AND SOFTWARE IMPLEMENTERS TO
USE AMBIQ MICRO PRODUCTS. THERE ARE NO EXPRESS OR IMPLIED COPYRIGHT LICENSES GRANTED HEREUNDER
TO DESIGN OR FABRICATE ANY INTEGRATED CIRCUITS OR INTEGRATED CIRCUITS BASED ON THE INFORMATION IN
THIS DOCUMENT. AMBIQ MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN. AMBIQ MICRO MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE REGARDING THE
SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR DOES AMBIQ MICRO ASSUME ANY LIABILITY
ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT, AND SPECIFICALLY DISCLAIMS ANY
AND ALL LIABILITY, INCLUDING WITHOUT LIMITATION CONSEQUENTIAL OR INCIDENTAL DAMAGES. “TYPICAL”
PARAMETERS WHICH MAY BE PROVIDED IN AMBIQ MICRO DATA SHEETS AND/OR SPECIFICATIONS CAN AND DO
VARY IN DIFFERENT APPLICATIONS AND ACTUAL PERFORMANCE MAY VARY OVER TIME. ALL OPERATING
PARAMETERS, INCLUDING “TYPICALS” MUST BE VALIDATED FOR EACH CUSTOMER APPLICATION BY CUSTOMER’S
TECHNICAL EXPERTS. AMBIQ MICRO DOES NOT CONVEY ANY LICENSE UNDER NEITHER ITS PATENT RIGHTS NOR
THE RIGHTS OF OTHERS. AMBIQ MICRO PRODUCTS ARE NOT DESIGNED, INTENDED, OR AUTHORIZED FOR USE AS
COMPONENTS IN SYSTEMS INTENDED FOR SURGICAL IMPLANT INTO THE BODY, OR OTHER APPLICATIONS
INTENDED TO SUPPORT OR SUSTAIN LIFE, OR FOR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE
AMBIQ MICRO PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.
SHOULD BUYER PURCHASE OR USE AMBIQ MICRO PRODUCTS FOR ANY SUCH UNINTENDED OR UNAUTHORIZED
APPLICATION, BUYER SHALL INDEMNIFY AND HOLD AMBIQ MICRO AND ITS OFFICERS, EMPLOYEES, SUBSIDIARIES,
AFFILIATES, AND DISTRIBUTORS HARMLESS AGAINST ALL CLAIMS, COSTS, DAMAGES, AND EXPENSES, AND
REASONABLE ATTORNEY FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PERSONAL INJURY OR
DEATH ASSOCIATED WITH SUCH UNINTENDED OR UNAUTHORIZED USE, EVEN IF SUCH CLAIM ALLEGES THAT
AMBIQ MICRO WAS NEGLIGENT REGARDING THE DESIGN OR MANUFACTURE OF THE PART.

FreeRTOS9 on AmbiqSuite SDK User’s Guide

A-SOCAP3-UGGA05EN v1.1 3

Revision History

Reference Documents

Revision Date Description

1.0 April 11, 2022 Initial release.

1.1 January 3, 2023 Updated document part number.

Document ID Description

FreeRTOS9 on AmbiqSuite SDK User’s Guide Table of Contents

A-SOCAP3-UGGA05EN v1.1 4

Table of Contents

1. Overview ... 5

2. Low Power Operation with FreeRTOS9 .. 6
2.1 Tick Management .. 6
2.2 Idle Implementation ... 7

3. Tick Management with FreeRTOS9 Port for Apollo/Apollo2 8
3.1 Default FreeRTOS Mode .. 8
3.2 FreeRTOS Tickless Idle Mode ... 8
3.3 Ambiq Tickless Idle Mode ... 9

4. Idle Implementation with FreeRTOS9 for Apollo and Apollo2 10

5. Sample Applications Framework .. 11

6. Additional Notes for Application Developers 13
6.1 Interrupt Priority .. 13
6.2 Ctimer/Stimer Usage .. 13
6.3 Implementation of am_freertos_sleep() ... 14

7. Example Application in SDK .. 15
7.1 FreeRTOS Sampler Example ... 15

7.1.1 ISR_Table .. 16
7.2 Task Function .. 16

7.2.1 TaskDelayTask ... 17
7.2.2 SerialTask .. 17
7.2.3 ButtonTask ... 17
7.2.4 AppTask ... 18
7.2.5 ITMTask .. 18
7.2.6 IDLE Task ... 18

5 A-SOCAP3-UGGA05EN v1.1

SECTION

1 Overview

This Application Guide explains the implementation specific aspects of FreeRTOS9 delivered
with the AmbiqSuite SDK. The guide covers low power operation with FreeRTOS9 when using
Ambiq specific port, and also outlines optional application framework used by the example
applications. An overview of the example applications provided with the SDK is included, to
enable quick start with FreeRTOS9.

This application guide is intended as a supplement to the extensive documentation already
provided with FreeRTOS9. Detailed information about FreeRTOS internals and usage guide can
be found at: http://www.freertos.org/Documentation/RTOS_book.html

Low power operation with FreeRTOS is detailed at:
http://www.freertos.org/low-power-tickless-rtos.html

http://www.freertos.org/Documentation/RTOS_book.html
http://www.freertos.org/low-power-tickless-rtos.html

6 A-SOCAP3-UGGA05EN v1.1

SECTION

 2 Low Power Operation with
FreeRTOS9

During periods of prolonged inactivity, it is optimal to place the microcontroller into a low
power state for power saving. By default, the FreeRTOS9 port on Arm M4 microcontrollers relies
on SYSTICK interrupt to track time. Hence, even during idle times, it is necessary to periodically
exit and then re-enter the low power state to process tick interrupts. This could severely limit
the efficiency, depending on the frequency of the tick interrupt.

FreeRTOS provides mechanisms to override this default behavior for better power efficiency.
This section lists the FreeRTOS options geared for power saving.

2.1 Tick Management

Tick Management defines how the internal ticks are driven/managed. These are
controlled by two flags in FreeRTOSConfig.h.

configOVERRIDE_DEFAULT_TICK_CONFIGURATION

– 0: Rely on ARM SYSTICK (Default implementation) as described above
– 1: Rely on custom implementation.

configUSE_TICKLESS_IDLE

– 0: Use a periodic tick interrupt regardless of the other activities, and hence
suffers from the need to periodically wake up the code to service the tick
interrupts

– 1: FreeRTOS tickless idle mode stops the periodic tick interrupt during idle
periods (when there are no application tasks that are able to execute), then
makes a correcting adjustment to the RTOS tick count value when the tick
interrupt is restarted. Stopping the tick interrupt allows the microcontroller
to remain in a power saving state until either an interrupt occurs, or it is time
for the RTOS kernel to transition a task into the Ready state.

– 2: Rely on custom implementation.

FreeRTOS9 on AmbiqSuite SDK User’s Guide Low Power Operation with FreeRTOS9

7 A-SOCAP3-UGGA05EN v1.1

The freertos_lowpower example sets these configuration parameters as follows:

#define configOVERRIDE_DEFAULT_TICK_CONFIGURATION 1 // Enable non-SysTick
based Tick

#define configUSE_TICKLESS_IDLE 2 // Ambiq specific implementation for Tick-
less

2.2 Idle Implementation

The default implementation of the Idle Task in FreeRTOS invokes a WFI after doing
the required maintenance operations. FreeRTOS provides following hooks to
implement low power specific actions when idling.

configPRE_SLEEP_PROCESSING

– Should be used to implement any actions prior to, and optionally including
getting into WFI (e.g., saving necessary state information and powering
down the peripherals).

– When using this function implementing call to WFI inside, the function
should always return 0.

– If WFI is not invoked from this function, it should return the same value as
passed in as idleTime. In this case, the FreeRTOS9 implementation would
invoke WFI

configPOST_SLEEP_PROCESSING

– Should be used to implement actions needed to recover after getting back
to active state (e.g., powering the peripherals back up, and restoring inter-
nal state).

The freertos_lowpower example implements a call to:

am_hal_sysctrl_sleep(AM_HAL_SYSCTRL_SLEEP_DEEP);

For the configPRE_SLEEP_PROCESSING function.

8 A-SOCAP3-UGGA05EN v1.1

SECTION

3 Tick Management with
FreeRTOS9 Port for Apollo/
Apollo2

Default Ambiq port of FreeRTOS9 builds upon the hooks provided for extending the low power
operation modes, and provides following options for FreeRTOS9 tick management. Three pos-
sible modes possible as described below. Other combinations are invalid.

3.1 Default FreeRTOS Mode

This mode is elected by setting the following:

configOVERRIDE_DEFAULT_TICK_CONFIGURATION = 0

configUSE_TICKLESS_IDLE = 0

This is the native mode provided by FreeRTOS9. This implementation uses Arm Sys-
Tick interrupts to keep track of time. When in this mode, core will need to keep ser-
vicing the high frequency SysTick interrupts even when idling. Core should not be
powered down when using this setting.

3.2 FreeRTOS Tickless Idle Mode

This mode is elected by setting the following:

configOVERRIDE_DEFAULT_TICK_CONFIGURATION = 0

configUSE_TICKLESS_IDLE = 1

This is the Tickless Idle mode provided by FreeRTOS. This implementation also uses
ARM SysTick interrupts to keep track of time. However, it reprograms the SysTick
interrupts for less interruptions when idling to reduce the core wake-ups for power
efficiency. Core should not be put in Deep Sleep mode when using this setting as
the SysTick timer needs to keep running.

FreeRTOS9 on AmbiqSuite SDK User’s Guide Tick Management with FreeRTOS9 Port for Apollo/Apollo2

9 A-SOCAP3-UGGA05EN v1.1

3.3 Ambiq Tickless Idle Mode

This mode is elected by setting the following:

configOVERRIDE_DEFAULT_TICK_CONFIGURATION = 1

configUSE_TICKLESS_IDLE = 2

This is Ambiq specific implementation geared towards lowest power usage with
FreeRTOS9. This implementation relies on an external timer instead of Arm SysTick
to keep track of time - allowing the core to be completely powered down when
idling.

This mode provides further configurability through flag AM_FREERTOS_USE_S-
TIMER_FOR_TICK in FreeRTOSConfig.h.

AM_FREERTOS_USE_STIMER_FOR_TICK defined

– Uses STimer for FreeRTOS9 Tick
– This mode is only available in Apollo2, which supports the Stimer
– Stimer is started from, and managed by the porting code, and is not avail-

able for reuse for other purpose

Limited reuse of the Stimer is still possible by applications, as long as
they do not reconfigure the Stimer. An example of the same is provided
under USE_STIMER_FOR_WSF in freertos_fit example.

AM_FREERTOS_USE_STIMER_FOR_TICK not defined

– Uses CTimer3 for FreeRTOS9 Tick
– This is the only mode available in Apollo
– CTimer3 is started from and managed by the porting code, and is not avail-

able for reuse for other purpose

– Application needs to implement generic Ctimer ISR handler (am_ctim-
er_isr) to service the registered interrupts by calling am_hal_ctimer_int_-
service()

Sample code can be found in example applications rtos.c

Other Ctimers can be used by application

NOTE: The Core can be put in Deep Sleep mode when using this setting.

NOTE: CTIMER3 is tied into the ADC sampling in Apollo2. If this feature is
desired, then AM_FREERTOS_CTIMER_NUM should be modified to use
another Ctimer.

10 A-SOCAP3-UGGA05EN v1.1

SECTION

 4 Idle Implementation with
FreeRTOS9 for Apollo and
Apollo2

Default Ambiq port of FreeRTOS9 does not override the definition of configPRE_SLEEP_PRO-
CESSING / configPOST_SLEEP_PROCESSING hooks.

The optional Application Framework used by all the sample examples does provide default
implementation for these as described in following section.

11 A-SOCAP3-UGGA05EN v1.1

SECTION

 5 Sample Applications
Framework

Ambiq provided sample applications follow a uniform framework, which could also be re-used
by application writers if they chose so. This section details organization of this framework.

File FreeRTOSConfig.h contains various FreeRTOS9 customization options
Refer to http://www.freertos.org/a00110.html for more details

File rtos.c contains:
– Debug Hooks

Default implementation of FreeRTOS provided debug hooks vApplicationMalloc-
FailedHook() and vApplicationStackOverflowHook() are provided in for example
applications.

– Low Power function hooks
The default FreeRTOSConfig.h maps FreeRTOS provided hooks:
configPRE_SLEEP_PROCESSING and configPOST_SLEEP_PROCESSING to the fol-
lowing functions, which could be implemented to applications' choosing

am_freertos_sleep() - should be used to implement any actions prior to, and
optionally including getting into WFI, (e.g., saving necessary state information &
powering down the peripherals).

Ideally, the last action in the function should be to call the HAL call for getting into
appropriate low power mode.

am_hal_sysctrl_sleep(AM_HAL_SYSCTRL_SLEEP_DEEP) OR am_hal_sysc-
trl_sleep(AM_HAL_SYSCTRL_SLEEP_NORMAL)

NOTE: AM_HAL_SYSCTRL_SLEEP_DEEP mode powers down the core and
hence is only possible when using Ambiq Tickless Idle Mode
(configUSE_TICKLESS_IDLE = 2).

http://www.freertos.org/a00110.html

Apollo3 Blue Plus Voice-on-SPOT Kit Reference Design User’s Guide Sample Applications Framework

12 A-SOCAP3-UGGA05EN v1.1

When using this HAL function or directly invoking WFI inside this function, the func-
tion should always return 0.

If WFI is not invoked from this function, it should return the same value as passed in
as idleTime. In this case, the FreeRTOS implementation would invoke WFI

am_freertos_wakeup() - should be used to implement actions needed to recover
after getting back to active state, e.g. powering the peripherals back up, and restor-
ing internal state

Default implementation of am_ctimer_isr()
– This is important when using AM_FREERTOS_USE_STIMER_FOR_TICK = 0, along with

configOVERRIDE_DEFAULT_TICK_CONFIGURATION = 1 and configUSE_TICK-
LESS_IDLE = 2

Task Setup framework
– run_tasks()
This function is called from the main() of the application after it finishes all the

required non-FreeRTOS setup operations.
This function is not expected to return
This function creates a single task setup_task and starts the FreeRTOS Task sched-

uler.
– setup_task()
This function provides a place for any specific initializations that can only happen

after the FreeRTOS scheduler has been started.
After the required setup operations, it should create all the application specific tasks

and suspend itself.

The main application makes a single call to run_tasks() to start the FreeRTOS tasks. This func-
tion never returns.

NOTE: The Ctimers share the am_ctimer_isr function, so the default
implementation includes the call to am_hal_ctimer_int_service with the interrupt
information so that Ctimer interrupts are processed for the application.

13 A-SOCAP3-UGGA05EN v1.1

SECTION

 6 Additional Notes for
Application Developers

6.1 Interrupt Priority

Listed below are some important things to consider when setting up the interrupt
priorities. Detailed information is available at http://www.freertos.org/RTOS-Cor-
tex-M3-M4.html

Arm Cortex-M4 ports use numerically lower values to represent logically higher
priority levels.

Cortex-M interrupts default to having a priority value of zero. Zero is the highest
possible priority value. Therefore, never leave the priority of an interrupt that
uses the interrupt safe RTOS API at its default value.

Any interrupt that uses the FreeRTOS API (API functions that end in "FromISR")
must be set to a priority value numerically at or above the RTOS kernel (as con-
figured by the configKERNEL_INTERRUPT_PRIORITY macro), but lowest
numerical value cannot be lower than configMAX_SYSCALL_INTER-
RUPT_PRIORITY.

Arm Cortex-M core stores interrupt priority values in the most significant bits of
its eight bit interrupt priority registers. The configMAX_SYSCALL_INTER-
RUPT_PRIORITY and configKERNEL_INTERRUPT_PRIORITY settings found
in FreeRTOSConfig.h require their priority values to be specified as the Arm Cor-
tex-M core itself wants them - already shifted to the most significant bits of the
byte.

configMAX_SYSCALL_INTERRUPT_PRIORITY must not be set to 0

6.2 Ctimer/Stimer Usage

As explained above, the use of Ctimer3/Stimer by the applications may be
restricted, depending on the Tickless mode being used.

http://www.freertos.org/RTOS-Cortex-M3-M4.html
http://www.freertos.org/RTOS-Cortex-M3-M4.html

Apollo3 Blue Plus Voice-on-SPOT Kit Reference Design User’s Guide Additional Notes for Application Developers

14 A-SOCAP3-UGGA05EN v1.1

6.3 Implementation of am_freertos_sleep()

As explained above, applications can implement this function to optionally include
calls to am_hal_sysctrl_sleep(). AM_HAL_SYSCTRL_SLEEP_DEEP is possible
only when using Ambiq Tickless Idle Mode (configOVERRIDE_DEFAULT_TICK_-
CONFIGURATION = 1, configUSE_TICKLESS_IDLE = 2).

15 A-SOCAP3-UGGA05EN v1.1

SECTION

 7 Example Application in SDK

Ambiq SDK provides various examples demonstrating FreeRTOS usage.

freertos_sampler
– This application has been written to demonstrate various FreeRTOS features, and has

been described in detail in next section.
freertos_lowpower

– This example implements LED task within the FreeRTOS framework.
– It monitors three On-board buttons, and toggles respective on-board LEDs in response.
– When Idle, it puts the core in deep sleep mode.

freertos_fit
– This example uses Cordio BLE stack andthen invokes the Fit profile therein, imple-

mented on FreeRTOS, using the Dialog BLE daughter card for Ambiq EVK.
– By default, it uses FreeRTOS Timer for implementing WSF ticks.
– As a demonstration, it can be compiled to instead use external timers (either Ctimer1, or

in case of Apollo2 reusing Stimer used for implementing FreeRTOS ticks)

7.1 FreeRTOS Sampler Example

This Ambiq Micro Demo program shows several FreeRTOS API structures and how
to use them in a simple application. This application demo shows the use of Event
Groups, TaskNotify, Queues, Interrupts and Tickless Operation in Low Power Sleep
Functions. Placing the Apollo / Apollo_2 processors into a Sleep mode reduces the
Average power with a single Timer running. Further power reductions can be
achieved by turning off all clocks and power domains. A single Timer must be kept
active for FreeRTOS, to be able to keep Real Time Ticks available and current. Three
interrupts are setup to test the low power idle modes ability to keep track of Sys-
tem Tick time in a typical Real Time System.

STimer->CMP-0, UART1, GPIO24, GPIO26 and ITM peripherals are left powered on.

Apollo3 Blue Plus Voice-on-SPOT Kit Reference Design User’s Guide Example Application in SDK

16 A-SOCAP3-UGGA05EN v1.1

7.1.1 ISR_Table

BTN2 and BTN3 handlers trigger an xEventGroupSetBitsFromISR() to But-
ton_task.c->ButtonTask()

7.2 Task Function

Each task uses a different FreeRTOS API function to pass data from its interrupt to
the task. Each FreeRTOS function has a different internal delay due to the internal
structures involved.

Table 7-1: ISR_Table

Peripheral Interrupt Function Name Demo Function

UART1 freertos_sampler.c ->am_uart1_isr() Captures serial data to a circular
buffer Pushes an event message to
SERQueue after each byte received

Stimer port.c ->xPortStimerTickHandler()1

1 Only one timer will be used at a time.

Used for FreeRTOS Tick functions
Called from am_stimer_cm-
pr0_isr()

Ctimer port.c ->xPortCTimer0TickHandler()1 Used for FreeRTOS Tick functions.
Called from am_ctimer_isr()

GPIO24 (BTN2) button_task.c ->am_gpio_isr() Captures BTN2 presses, Toggles LED
1 Calls button_task.c->but-
ton1_handler()

GPIO26 (BTN3) button_task.c ->am_gpio_isr() Captures BTN3 presses, Toggles LED
2 Calls button_task.c->but-
ton2_handler()

Table 7-2: Task Function

Task Created Description Free RTOS APIs Demonstrated

TaskDelayTask() Cycles through Task Delay’s TaskDelayUntil

SerialTask() Handles UART1 Receive interrupts Queue

ButtonTask() Handles BTN1 and BTN2 interrupts Event Groups

AppTask() Handles Timer interrupts TaskNotify

ITMTask() Prints ITM messages to the Debugger Queue

prvIdleTask() Used by FreeRTOS for resource cleanup
and enable sleep functions.

This is the Idle Task implementa-
tion in FreeRTOS

Apollo3 Blue Plus Voice-on-SPOT Kit Reference Design User’s Guide Example Application in SDK

17 A-SOCAP3-UGGA05EN v1.1

7.2.1 TaskDelayTask

Cycles through four VTaskDelayUntil() calls to show off the Sleep functions. As
each Delay is called, the IdleTask() will call port.c->vPortSuppressTicksAnd-
Sleep() to place the processor into sleep mode. Each task delay call uses a delay
time in System Ticks. Each tick delay is multiplied by 32 timer counts and programs
the selected timer. The four task delay calls use 31, 8, 55 and 24000 ticks to place
the processor into sleep mode for different times. The 24000 tick delay is use to ver-
ify a sleep delay greater than a 16-bit timer count.

7.2.2 SerialTask

The serial task is linked to the am_uart1_isr() with the SERQueueElement. Each
byte received by uart1 triggers an interrupt service routine to retrieve that byte
and places it into a circular buffer. The interrupt service routine sends a Queue
message via the SERQueueElement->RTOS_event. When the scheduler runs
again, the Queue will pass the RTOS_event to the SerialTask(). The SerialTask()
will read and decode the RTOS_event from the SERQueueElement buffer. The
decoded RTOS_event will call serial_handleer() to print a message to the ITM
debug port.

7.2.3 ButtonTask

ButtonTaskSetup() registers the GPIO26 and GPIO24 to hardware interrupt han-
dlers button1_hander() and button2_handler respectively.

When a Button is pressed, the hardware will vector to am_gpio_isr() and then pass
the gpio_register status to am_hal_gpio_int_service(status). This status con-
tains the gpio number index into the am_hal_gpio_ppfnHandlers[x] array. The
correct handler will be call to service its respective gpio pin.

The registered button[x]_handler() will de-bounce the input gpio pin for 20
mSecs before passing to the function button_handler(x).

The button_handler(x) will register an event to the xButtonEventHandle - Event-
Group and yield the scheduler from the ISR.

The ButtonTask() will be made active to service the EventGroup and decode the
button pressed.

The bitSet in gpio_register_status will decode and toggle LED17 and LED18
respectively.

Apollo3 Blue Plus Voice-on-SPOT Kit Reference Design User’s Guide Example Application in SDK

18 A-SOCAP3-UGGA05EN v1.1

7.2.4 AppTask

This task uses the TaskNotify() API to communicate with a timer interrupt. A sim-
ple ulTaskNotifyTake() function halts the ApTask() until a xTaskNotify-
Give(xAppTask) is executed.

7.2.5 ITMTask

This task is used to print user messages on the ITM port.

A queue is used to pass messages to the ITMTask() and those messages are sent to
the ITM Port.

At program startup i.e. main() the function Freertos_sampler.c->enable_it-
m_print(…) is called to register and enable the ITM/SWO debug output. An API
call to am_util_stdio_printf_init (am_bsp_itm_string_print); will route stdio
printf calls to the ITM port. Any messages can be printed to a buffer then that buf-
fer can be sent to the ITM port via a call to print_via_itm_task(pui32Temp).
print_via_itm_task(pui32Temp) will buffer the message to a queue and then to
ITMQueue_send(&itm_msg); for printing on the ITM/SWO debug port.

7.2.6 IDLE Task

This task is part of core FreeRTOS, and described here just for sake of completeness.

This task is created by Tasks.c->vTaskStartScheduler() before the scheduler is
started. FreeRTOS will return to the IDLE task when no tasks are in the Ready state.

If configUSE_TICKLESS_IDLE is defined and there are no tasks ready to run, IDLE
task calls prvGetExpectedIdleTime() to check if the xExpectedIdleTime is
greater than or equal to two (Ticks).

portSUPPRESS_TICKS_AND_SLEEP() performs one last check to eTaskCon-
firmSleepModeStatus() to be sure the sleep function has not be aborted by
another task. The processor global interrupts are turned off and the selected timer
is programmed to the xExpectedIdleTime and the processor is put to sleep.

© 2023 Ambiq Micro, Inc. All rights reserved.
6500 River Place Boulevard, Building 7, Suite 200, Austin, TX 78730

www.ambiq.com
sales@ambiq.com
+1 (512) 879-2850

A-SOCAP3-UGGA05EN v1.1
January 2023

	Overview
	Low Power Operation with FreeRTOS9
	2.1 Tick Management
	2.2 Idle Implementation

	Tick Management with FreeRTOS9 Port for Apollo/ Apollo2
	3.1 Default FreeRTOS Mode
	3.2 FreeRTOS Tickless Idle Mode
	3.3 Ambiq Tickless Idle Mode

	Idle Implementation with FreeRTOS9 for Apollo and Apollo2
	Sample Applications Framework
	Additional Notes for Application Developers
	6.1 Interrupt Priority
	6.2 Ctimer/Stimer Usage
	6.3 Implementation of am_freertos_sleep()

	Example Application in SDK
	7.1 FreeRTOS Sampler Example
	7.1.1 ISR_Table

	7.2 Task Function
	7.2.1 TaskDelayTask
	7.2.2 SerialTask
	7.2.3 ButtonTask
	7.2.4 AppTask
	7.2.5 ITMTask
	7.2.6 IDLE Task

